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Supplemental methods 

DNA isolation and exome sequencing 

Tumor and adjacent non-tumorous liver samples were stored as fresh frozen tissue. 

DNA was isolated using the DNeasy Blood & Tissue Kit (Qiagen, Cat# 69504). The 

DNA concentration was measured using Qubit 3.0 (Invitrogen). Next, the DNA size 

was checked using Fragment Analyzer (Advanced Analytical Technologies). 500 ng to 

1 mg of DNA was sheared into fragments of approximately 300 bp using Covaris S2 

ultrasonicator (Covaris). The library was constructed using the NEBNext Ultra DNA 

Library Prep Kit for Illumina (New England Biolabs) according to the manufacturer‟s 

protocol. Exome capturing was performed using SureSelectXT Human All Exon V6 

(target size 60 Mb, Agilent, Santa Clara, CA). Captured genomic DNA was sequenced 

using paired-end Illumina NovaSeq (Illumina, San Diego, CA) with 150 base pairs 

(bp) read length, and at least 20 gigabases per sample were produced. 

The adapter sequences in the raw data were removed using Cutadapt (v1.14).
[1]

 The 

remaining adapter-trimmed reads were assessed using two criteria: 1) if the total 

number of bases with base quality scores less than 20 exceeded half of the read length, 

and 2) if the total number of undetermined base N in the read exceeded 10% of the 

read length. If either read of a read pair met one of the above criteria, the read pair 

was removed. All high-quality reads were subjected to gapped alignment with the 

UCSC human reference genome (hg19) using the Burrows-Wheeler Aligner (version 

0.7.15) with default parameters.
[2]

 The resulting BAM files were sorted, and 

duplicated reads were marked using Picard tools (v2.11.0) 

(http://broadinstitute.github.io/picard/). Next, the reads were realigned to the genome 

and base quality scores were recalibrated using the Genome Analysis Toolkit (GATK 

3.8.0) to produce analysis-ready BAM files. 
[3]

 



 

 

Somatic mutation 

Point mutations were called with MuTect (v1.1.4).
[4]

 Small insertions and deletions 

(Indels) were called using Strelka (v2.8.4).
[5]

 To ensure accurate calling, a series of 

filtering criteria were applied to the variant candidates. A mutation call was kept if: 1) 

the site had at least 10X total coverage and at least 3X mutation coverage in the tumor 

sample; 2) at least 10X total coverage and at most 1X mutation coverage in the 

matched normal sample. Only indel calls marked with „PASS‟ in the VCF file were 

kept. All high-quality variants were then annotated with SnpEff 3.0.
[6]

 

Copy number alteration 

Sequenza (version 2.1.2) was used to analyze copy number alterations (CNAs) while 

considering both ploidy and cellularity.
[7]

 Specifically, the BAM files from the normal 

control and tumor samples of each patient were input into the main program. For each 

heterozygous site, the depth ratio was calculated and then normalized based on the 

GC content bias of the genome. To obtain segmented copy number data, the following 

parameters were used: breaks.method=„full‟, gamma=40, kmin=5. Sex chromosomes 

were excluded from this analysis. We used Genomic Identification of Significant 

Targets in Cancer (GISTIC)
[8]

 to identify recurrent CNAs across the cohort. For each 

sample, we first filtered out segments with a total length of less than 500 kb. 

Mutation heatmap and phylogenetic tree 

The mutation matrix was represented with the binary value of 0/1 indicating the 

absence/presence of mutations. We applied PyClone (version 0.13.0) to calculate the 

cancer cell fraction (CCF) value for each identified mutation.
[9-10]

 Mutations with 

CCF > 0.7 and shared by all tumor regions were considered clonal mutations, and the 

rest were considered to be subclonal mutations. To reveal the clonal relationship of 

the tumor samples from each patient, phylogenetic trees were constructed using 

MEGA5.
[11]

 Sequences of 20 bp in length surrounding the non-silent mutations, as 



 

 

well as all mutations, were extracted to construct the phylogenetic trees of each 

patient based on the maximum-parsimony algorithm. All phylogenetic trees were 

further optimized using Adobe Illustrator. Three categories of potential driver events 

were labeled on the tree: genes in black were those documented by the Cancer Gene 

Census (CGC) (https://cancer.sanger.ac.uk/census); genes in red were actionable 

genes extracted from the DrugBank database (https://www.drugbank.ca/); genes in 

blue were sorafenib-targeted amplifications, including BRAF, CCND1, FLT3, VEGFA, 

and PDGFRB. 

Mutation-ITH, clonal-ITH and CNA-ITH 

For the multi-region samples (R1, R2, R3, R4, R5) of each patient, we calculated the 

proportion of non-shared mutations relative to the total number of mutations as the 

mutation-ITH index by the following formula:  

Mutation − ITH = 1 −
R1 ∩ R2 ∩ R3 ∩ R4 ∩ R5

R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5
 

Genes with CCF > 0.7 and shared by all tumor regions were considered clonal 

mutations, and the remaining mutations were considered as subclonal mutations. We 

calculated the proportion of clonal mutations relative to the total number of mutations 

as the clonal ITH by the following formula: 

Clonal − ITH = 1 −
A

R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5
 

A: Number of clonal mutations 

We next evaluated the heterogeneity of CNAs for ICC patients. We used GISTIC to 

identify recurrent CNAs across the cohort. Through comparisons of different samples 

in each case, amplification and deletion CNAs were classified into shared and 

non-shared categories. For the multi-region samples (R1, R2, R3, R4, R5) of each 

patient, we calculated the proportion of non-shared CNAs relative to the total number 



 

 

of CNAs as the CNA-ITH index by the following formula: 

CNA − ITH = 1 −
B

R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5
 

B: Number of shared CNAs 

RNA isolation and sequencing 

50–100 mg of tissue samples was ground in a liquid-nitrogen-cooled mortar, after 

which 1 mL of TRIzol™ Reagent (Invitrogen, Cat# 12183555) was immediately 

added to further homogenize the sample. Total RNA was isolated using the RNeasy 

Mini Kit (Qiagen, Cat# 74106), after which mRNA was enriched, fragmented, 

reversed-transcribed into cDNA, and subjected to end-repair and adapter ligation 

processes. RNA-seq libraries were constructed using the NEBNext Ultra RNA 

Library Prep Kit (New England Biolabs) according to the manufacturer‟s protocol. 

Finally, the library (2x 150-bp paired-end reads) was quality-checked and sequenced 

with Illumina Novaseq 6000 system (Illumina). 

Qualified reads were obtained after removing raw reads with adapters or of low 

quality and then aligned to the human genome (hg19) using STAR (version 2.6.1c).
[12]

 

The fragments per kilobase of exon per million mapped reads (FPKM) values and 

gene count values were computed using RSEM (version 1.3.1). Differentially 

expressed genes (DEGs) between IDH-SG/IDH-NO tumors were identified by 

DESeq2 using the gene count values as input.
[13]

 Genes with absolute fold change ≥ 1 

and p value ≤ 0.01) were considered as DEGs and were used to perform pathway 

enrichment analysis. 

Hierarchical clustering of ICC tumor samples 

For all tumor samples with available RNA-seq data, FPKM values generated by 

RSEM were used, and highly variable genes (HVGs) across samples were selected to 



 

 

perform hierarchical clustering. Briefly, we removed genes expressed in less than 10% 

of all available samples and log-transformed the remaining genes. Next, we calculated 

the coefficient of variation (CV) value for each gene and selected those with CV 

values greater than 0.8 as HVGs. Euclidean distance was used as the distance metric, 

and ward. D2 was set as the clustering method to cluster samples. 

RNA-ITH on the gene level 

To systematically analyze transcriptomic ITH using gene expression data, we adopted 

the method introduced by a recent study on non-small cell lung cancer.
[14]

 Briefly, we 

defined two metrics, RNA intertumor heterogeneity (RNA-InterTH) and RNA 

intratumor heterogeneity (RNA-InterTH, denotes as RNA-ITH in keeping with other 

ITH metrics), to quantify heterogeneities across different patients and across regions 

of the same patient, respectively.  

To derive the RNA-ITH score, the standard deviation (SD) of the expression values 

for each gene across the tumor regions of a given patient was calculated to yield a 

gene-specific, patient-specific measure of RNA-ITH. This process was repeated for 

all genes, followed by all tumors, generating a gene-by-patient matrix. RNA-ITH 

scores were summarized as the average value per gene across all tumors in the cohort 

by the following formula:  

RNA − ITH =
∑ 𝜎𝑔𝑖

𝑖=𝑛
𝑖=1

𝑛
 

Where 𝜎𝑔𝑖
is the standard deviation of the i

th
 gene across all regions from the same 

patient and n is the number of genes retained.  

To derive the RNA-InterTH score, we randomly sampled one region per patient and 

calculated the SD for each gene across the resulting single-biopsy cohort. This 

process was repeated 10,000 times and the average score across iterations was 

calculated for each gene to yield the RNA-InterTH score. 



 

 

Finally, we split the RNA-InterTH and RNA-ITH scores by their corresponding mean 

values to generate the RNA heterogeneity quadrants. To quantitively compare the 

clinical relevance of these four quadrants, the prognostic scores for each quadrant 

were calculated based on the Prediction of Clinical Outcomes from Genomic Profiles 

(PRECOG) database (http://precog.stanford.edu) 

RNA-ITH on the patient level 

To systematically compare the gene expression heterogeneity between ICC and HCC 

datasets, we calculated the RNA-ITH score for each patient. We first combined the 

gene expression matrix of ICC and HCC and kept genes expressed across all ICC and 

HCC samples. Next, we calculated the CV values for each gene across all tumor 

regions for each patient, yielding a patient-specific, gene-specific CV matrix. Next, 

for each patient, we selected the top 100 genes with the highest CV values and took 

the average as the RNA-ITH score for that specific patient. 

Mahalanobis distance  

We used the Mahalanobis distance (MD) to assess ITH on the immune level as 

described.
[15]

 MD is the distance from each region to the centroid in a 

multi-dimensional space by taking both variances and covariances into account, 

which was calculated by the following formula: 

𝑀𝐷 = √(
𝑟

− 
𝑅

)𝑇𝑆−1(
𝑟

− 
𝑅

) 

where 
𝑟
 is the quantification level of immune markers of a specific region r in 

tumor R; 
𝑅

is the mean quantification level of immune markers in tumor R, and S is 

the covariance matrix of all markers. 

The tumor immune microenvironment was considered similar across different regions 

if the distance of each region within a tumor was close to 0. If the distribution of MD 



 

 

values of a given tumor fell within the range of 0-5, then the MD of this tumor was 

considered to be narrow, indicating that the immune microenvironment was highly 

similar across all regions of the given tumor. 

Immune-ITH 

To quantify the ITH of different regions on the immune level, we defined the 

immune-ITH score as previously described.
[16]

 For patients with ≥ 2 tumor sectors, 

we first calculated the pairwise Spearman‟s correlation between different tumor 

sectors from the same patient, then the immune-ITH was defined as:  

Immune − ITH = 1 − Median(1 −
6 ∑ 𝑑𝑖

2𝑖=𝑁
𝑖=1

𝑁𝑁2 ) 

Where N is the number of data pairs and di is the rank difference of the i
th

 data pair. 

Inference of immune cell fractions from bulk tumor 

The cellular composition of infiltrated immune cells was inferred by xCell.
[17]

 The 

differences in immune cell enrichment scores between high-ITH/low-ITH patients 

and IDH-SG/IDH-NO patients were compared using Student‟s t test. Nineteen CD8
+
 

T cell-related markers, including 4 genes determining cell identity (CD3D, CD3E, 

CD8A, and CD8B), 4 cytotoxic factors (GZMA, GAMB, NKG7, and TNFSF9), 4 

recruitment factors (STAT2, STAT6, CXCL9, and CXCL10), 4 exhausted factors 

(PDCD1, TIGIT, LAG3, and IDO1) and 3 co-inhibitors (CD276, CD274, and VTCN1) 

were used to cluster the samples. Unsupervised hierarchical clustering was performed 

with the ward. D2 method using Euclidean distance as the distance metric. 

Classification of IDH mutation subgroup 

Classification of IDH-mutant subgroup (IDH-SG) and a non-IDH-mutant subgroup 

(IDH-NO) was performed both on the sample level and the patient level. For each 

tumor sample, unsupervised clustering based on the expression of 60 IDH signature 



 

 

genes (Table S10) can robustly classify the samples into IDH-SG and IDH-NO 

groups. IDH-SG can be further confirmed with the presence of IDH mutated cases. 

Given that patients with one or more tumor regions exhibiting IDH signature may all 

potentially benefit from IDH targeted therapies, a patient should be classified as 

IDH-SG as long as one tumor region from this patient was classified as IDH-SG. 

Single cell suspension 

To avoid the sampling bias of single tumor regions, the single cell suspension was 

prepared from the mixture of multiple tumor regions from the same patient. All tumor 

samples from the same patient were mixed and then minced on ice to generate smaller 

pieces (less than 1 mm
3
) and transferred to 10 mL digestion medium containing 0.2% 

collagenase I/II (ThermoFisher Scientific), DNAse I (Sigma) and 25 units dispase 

(Invitrogen) in DMEM (ThermoFisher Scientific). Samples were incubated for 15 min 

at 37 °C, with manual shaking every 5 min. Next, 30 mL ice-cold PBS, pH 7.4, 

(ThermoFisher Scientific) containing 2% fetal bovine serum (ThermoFisher Scientific) 

was added, and the samples were filtered using a 40-µm nylon mesh (ThermoFisher 

Scientific). Following centrifugation at 120 × g for 5 min at 4 °C, the supernatant was 

decanted and discarded, and the cell pellet was resuspended in 2 mL red blood cell 

lysis buffer and transferred to a 2-mL DNA low bind tube. Next, 10 µL of this cell 

suspension was counted using an automated cell counter (Luna) to determine the 

concentration of live cells. Throughout the dissociation procedure, cells were 

maintained on ice whenever possible, and the entire procedure was completed in less 

than 1 h (typically ~45 min) to avoid dissociation-associated artifacts. Sample 

viability and cell concentration was assessed for each sample. 

Single cell cDNA library preparation and sequencing 

Single-cell cDNA library was prepared with the 10x Genomics Single Cell 3‟ v3 

Reagent Kit according to the manufacturer‟s protocol. cDNA was obtained after GEM 

generation and barcoding, followed by the GEM RT reaction and cleanup steps. The 



 

 

samples were then run on a Bioanalyzer (Agilent Technologies) to determine the 

cDNA concentration. cDNA libraries were prepared as recommended by the 10x 

Genomics v3 user guide with appropriate modifications to the PCR cycles based on 

the calculated cDNA concentration. The resulting libraries were sequenced on an 

Illumina NovaSeq 6000 system. For sample preparation on the 10x Genomics 

platform, the Chromium Single Cell 30 Library and Gel Bead Kit v3 (PN-120237), 

Chromium Single Cell 30 Chip kit v3 (PN-120236) and Chromium i7 Multiplex Kit 

(PN-120262) were used. 

Processing of scRNA-seq data 

Raw sequencing reads were aligned to reference genome hg38 using CellRanger 

(version 3.0.2) to generate a raw gene expression matrix for each sample. 

Downstream analysis was performed using the Seurat
[18]

 R package (version 3.1.5). 

Briefly, we removed genes expressed in less than 0.1% of all cells and removed cells 

with total expressed genes of less than 200 or more than 7,500. Cells with proportions 

of expressed mitochondrial genes of more than 30% were also removed. All 

downstream analysis was performed following the instructions proposed at 

https://satijalab.org/seurat. The cell clusters in the resulting two-dimensional 

representation were annotated to known biological cell types using well-known 

marker genes.  

CNA inference of single cells 

The chromosomal CNA profile of single cells was inferred using the inferCNV 

(version 1.0.4) R package.
[19]

 Immune cells from each patient were used as reference 

to define a baseline of normal karyotype such that their average copy number value 

was subtracted from all cells. To ensure accuracy, the following parameters were used: 

cutoff=0.1, noise_logistic=TRUE, sd_amplifier=1.5 and denoise=TRUE. 



 

 

Epithelial score and epithelial-mesenchymal transition score 

We used the expression levels of epithelial marker genes to confirm the classification 

of malignant and non-malignant cells. The epithelial score was calculated as the 

average expression level of a set of epithelial marker genes defined in this study.
[20]

 

For patients with available scRNA-seq data, we used the same method as previously 

described 
[21]

 to calculate the EMT score for each single cell using the following 

formula: 

EMT score = ∑ 𝑀𝑒𝑠𝑒𝑛𝑐ℎ𝑦𝑚𝑎𝑙 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

− ∑ 𝐸𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙 𝑔𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 

RNA-ITH based on the scRNA-seq data 

We also calculated the RNA-ITH score for each patient with scRNA-seq data. Briefly, 

we first combined the normalized gene expression matrix of the malignant cells of all 

patients and kept genes that were expressed in more than 70% of cells. Next, we 

calculated the CV value for each gene across all cells of each patient. This process 

was repeated for all patients, yielding a patient-specific, gene-specific CV matrix. 

Then, for each patient, we selected the top 100 genes with the highest CV values and 

took the average as the RNA-ITH score for that specific patient. 

Cell-cell interaction analysis 

To enable a systematic analysis of cell-cell communication, we reclustered each cell 

type. The CellPhoneDB
[22]

 package was then used to explore the interactions of 

ligand-receptor pairs between niche cell subtypes and malignant cells as previously 

reported 
[23]

. The interactions between distinct cell subpopulations via putative 

ligand-receptor pairs were visualized using the ggplot2 package. 



 

 

Gene set variation analysis 

Gene set variation analysis (GSVA) was performed for all patients with available 

scRNA-seq data using the 50 hallmark gene signatures (version 7.2) obtained from 

the Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb). All 

analyses were performed with default parameters using the gsva function as 

implemented in the GSVA R package (version 3.14.0).
[24]

 

Expression programs of malignant cells 

We applied NMF, as implemented in the NMF R packages (version 0.21.0), to extract 

transcriptional programs of malignant cells of each tumor. Briefly, for each tumor, we 

first excluded genes with SD < 0.5 and mean-centered the remaining genes across 

cells to obtain the relative expression values. Then we transformed the mean-centered 

expression matrix by replacing all negative values to zero. For each NMF run, we set 

the factors to 10 and for each of the resulting factors, we extracted the top 50 genes 

with the highest NMF scores as characteristics of that given factor. Each tumor was 

then scored according to these NMF programs. Hierarchical clustering of the scores 

for each program using Pearson correlation coefficients as the distance metric and the 

complete linkage revealed 3 correlated sets of meta-programs. 

Stemness, cytotoxicity and exhaustion scores 

We calculated the cell scores of certain gene sets by considering both average 

expression and the influence caused by different library complexities. As described by 

a previous study, we defined a control gene set in the calculation of different cell 

scores.
[20]

 Briefly, we first partitioned all analyzed genes into 25 bins according to 

their average expression levels across all cells. Then, for each gene from the target 

gene set (Gt), we randomly selected 100 genes from the bin to which this gene 

belonged. These randomly selected genes comprised the control gene set (Gc). Finally, 

Cell scores (CS) were calculated as CS=average (Gt)-average (Gc). 



 

 

Pseudotime trajectory analysis 

To depict the developmental trajectory of CD8
+
 T cells, the Monocle2 (version 2.12.0) 

R package was applied to the expression profiles of all CD8
+
 T cells.

[25]
 Briefly, the 

expression profiles (Seurat objects) were converted to Monocle cell data sets by the 

'importCDS' function. Differentially expressed genes between CD8
+
 T cells from 

IDH-SG samples and IDH-NO samples were tested using the 'differentialGeneTest' 

function. Putative trajectories were plotted using the 'plot_cell_trajectory' function 

and the pseudotime-dependent genes were visualized with the 

plot_pseudotime_heatmap function. 

Plot generation 

Boxplots were generated with the ggplot2 R package. The central rectangle spans the 

interquartile range (IQR, the first quartile to the third quartile), with the segment 

inside the rectangle corresponding to the median value. The lower and upper whiskers 

represent the minimum (or first quartile minus 1.5 x IQR) and the maximum (or third 

quartile plus 1.5 x IQR), respectively. Violin plots were generated with the ggplot2 R 

package. Kaplan-Meier plots of overall survival were generated with GraphPad Prism 

(version 7.0). 

Hematoxylin-eosin staining and histological grading 

The ICC tissues were fixed in 10% formalin and then embedded in paraffin wax 

blocks. Histological sections (4-5 μm thick) were prepared, dewaxed in xylene, 

rehydrated through decreasing concentrations of ethanol, and washed in PBS. The 

sections were stained with hematoxylin and eosin (H&E), after which they were 

dehydrated using increasing concentrations of ethanol and xylene. 

Immunohistochemistry and immunofluorescence 

Briefly, ICC patient tissues were fixed overnight with 10% neutral buffered formalin, 



 

 

embedded in paraffin, and then processed as 4 μm sections. The sections were 

blocked in 20% donkey serum in PBS for 30 minutes and incubated with the 

following primary antibodies overnight in a humidified chamber: anti-HGF antibody 

(1:200, abcam, Cat# ab52625), anti-KRT7 antibody (1:300, abcam, ab52625), 

anti-KRT19 antibody (1:600, abcam, ab181598), anti-CD8 antibody (1:200, abcam, 

ab237709), and anti-PD1 antibody (1:400, abcam, ab52587).  

Immunofluorescence  

For immunofluorescence imaging of ICC tumors, whole tumors were fixed in 4% 

PBS overnight and dehydrated in 30% sucrose/PBS prior to embedding in OCT 

freezing medium. 10 mm sections were cut on a cryostat, adhered to Superfrost Plus 

slides (ThermoFisher) and permeabilized/blocked with PBS with 0.3% Triton X-100 

(Sigma) and 10% goat serum (Jackson Immunoresearch). Sections were stained with 

directly conjugated antibodies (anti-CD8 antibody (1:200, abcam, ab237709); 

anti-GZMB antibody (1:300, abcam, ab25598)) in PBS with 0.1% Triton X-100 and 5% 

goat serum. 

Follow-up 

Patients were screened for carcinoembryonic antigen, CA199, and subjected to a 

computed tomography scan every 1-2 months for the first 6 months after surgery and 

every 3 months afterwards. When recurrence was suspected, magnetic resonance 

imaging or positron-emission tomography images were taken for confirmation. 

Disease-free survival was measured from the date of surgery to the date of recurrence. 

Follow-up of patients was continued until recurrence or June 2020. 

Statistical analysis  

Statistical analyses were performed using Graphpad Prism (version 7.0) and Rstudio 

(version 3.5.1). Comparisons between groups were conducted using the Chi-square 



 

 

test or Fisher‟s exact test for categorical variables and Student‟s t test or the Wilcoxon 

rank-sum test for continuous variables. A value of P < 0.05 was considered 

statistically significant. 
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 Supplemental figures 

 

Figure S1. Pathology and copy number alterations of ICC tumors.  

(A) Pathology of a representative ICC tumor sample. HE, hematoxylin and eosin; 

HGF, hepatocyte growth factor; KRT7, keratin 7; KRT19, keratin 19. Scale bar, 100 



 

 

µm. 

(B) Heatmap of CNAs. The Y-axis shows chromosomal coordinates.  

(C) Significant CNAs in genomic regions detected by GISTIC 2.0. Altered regions are 

shown as peaks. Copy number deletions and amplifications are shown in blue (left) 

and red (right), respectively. The vertical lines in each graph indicate the default q 

value of 0.25. 

 



 

 

 



 

 

Figure S2. Regional heatmap of somatic mutations in ICC tumors.  

(A) Heatmaps show the regional distribution of all mutations in eight ICC patients. 

Clonal and subclonal mutations are marked in blue and light blue, respectively. The 

columns next to each heatmap show four categories of mutations and their 

percentages: trunk clonal mutations (purple); trunk subclonal mutations (sky blue); 

branch mutations (pale green); and region-specific mutations (orange). Phylogenetic 

trees were constructed using a maximum parsimony algorithm based on mutations 

identified in each patient. The length of each line is proportional to the number of 

mutations. Mutations in potential driver genes are indicated, including CGC genes 

(black) and druggable genes (red). Sorafenib-targeted amplifications are annotated in 

blue. Patient IDs and region names are labeled in each tree. MRCA, most recent 

ancestor, IM, intrahepatic metastasis, MO, multiple occurrences. 

(B) The altered percentages of actionable genes and sorafenib-targeted genes affected 

by clonal trunk, subclonal trunk, and branch mutations. 

(C) Scatter plots showing the correlations between the tumor size and the 

mutation-ITH (left) or CNA-ITH (right), respectively. 

 



 

 

 



 

 

Figure S3. Heterogeneities in TMEs among different regions within a tumor.  

(A) Heatmap of the expression of 35 immune cell markers. 

(B) Heatmap of the expression of 63 immune-related functional markers. 

(C) Mahalanobis distance based on 35 immune cell markers. Each dot denotes the 

immune cell density of a sample. The mean and standard deviation of the immune cell 

density in each tumor are shown. The first panel, labeled “All cells”, shows the 

Mahalanobis distance plot when immunological markers of all immune cells (CD8
+ 

T, 

CD4
+ 

T, DC, Treg, macrophage, neutrophil, and plasma B cells) were considered. The 

other panels show the Mahalanobis distance plots when a single immunological 

marker was considered. 

(D) Mahalanobis distance based on 63 immune-related functional markers. 

  



 

 

 

Figure S4. Recurrence analysis of 14 ICC tumors. 

(A) Recurrence analysis of the high-ITH group and low-ITH group, P = 0.0101, log 

rank test. 

(B) Recurrence analysis of IDH-mut and IDH-wt tumors, P = 0.155, log rank test. 

(C) Recurrence analysis of IDH-SG and IDH-NO tumors, P = 0.0099, log rank test. 

 

 

 



 

 

 

Figure S5. TME analysis of our ICC cohort. 

(A) Composition of immune cells in ICC tumors using xCell. 

(B) Comparison of immune cells between IDH-SG and IDH-NO patients. *: P <0.05, 

**: P <0.01, ***: P <0.001, Student‟s t test. 

(C) Comparison of immune cells between high-ITH and low-ITH patients. *: P <0.05, 



 

 

**: P <0.01, ***: P <0.001, Student‟s t test. 

(D) Comparing the expression of CD8
+
 T cell-related markers between high-ITH and 

low-ITH patients. *: P <0.05, **: P <0.01, ***: P <0.001, Student‟s t test. 

  



 

 

 

Figure S6. Single-cell analysis of IDH-SG and IDH-NO tumors. 

(A) Heatmap showing the top DEGs in each cell type. 

(B) t-SNE plots, color-coded for the expression (gray to red) of marker genes for each 

cell type, as indicated. 

(C) Violin plots showing the expression of marker genes in distinct cell types. 

(D) Each panel shows the EMT scores (top section of panel) and a heat map with 

expression of the 16 EMT related genes for four ICC tumors (bottom section of 

panel). 



 

 

(E) Each panel shows the stemness scores (top section of panel) and a heat map with 

expression of the 11 stemness related genes for four ICC tumors (bottom section of 

panel). 

  



 

 

 

Figure S7. Single-cell analysis of non-malignant cells in IDH-SG and IDH-NO 

tumors. 

(A) t-SNE plots, color-coded for the expression (gray to red) of marker genes for each 

non-malignant cell type, as indicated. 

(B) Violin plots showing the expression of marker genes in distinct non-malignant cell 

types. 

(C) Violin plots showing the expression of marker genes in distinct T cell types. 

(D) Relative expression of GNLY, GZMA, GZMB, HAVCR2, LAG3, LAYN, NKG7, 



 

 

and TIGIT along pseudotime. 

(E) 2D density plot of the cytotoxicity and exhaustion states of CD8
+
 T cells in four 

ICC tumors. 

 

 


